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Computing Angular Distributions from 
Simulation Data 
C. Nathan Woods, XCP-8 

Introduction 
Overview 
The essential idea of this algorithm is to compute the angular distribution of a vector quantity, then 
create an informative image. In our example, we will compute the angular distribution of linear 
momentum from an xRage simulation of an exploding shaped charge. We will then explore one possible 
method for adding information to the resulting image. 

Computing Polar Angle 
The first thing to consider is how to properly define and compute the polar angle. In our case, we have a 
two dimensional simulation with an axis of symmetry oriented along the x-axis. We will measure the 
polar angle from the positive x-axis. Paraview does not offer an arctangent function that gives correct 
quadrants, so we will define one using a Programmable Filter, as shown in Programmable Filter 1.

 

Programmable Filter 1 - Code for computing the polar angle based on (x,y) components, as measured from the positive x-axis. 

p = inputs[0].CellData['cell_momentum'] 
 
def atan2(y,x): 
  sgnx = sign(x) 
  sgny = sign(y) 
  # This fails when x = 0, b/c arctan(y/x) = NaN, and 0*NaN = NaN. 
  # Make sure you've gotten rid of those using Threshold or similar. 
  out = sgnx**2*arctan(y/x)+.5*(1-sgnx)*(1+sgny-sgny**2)*pi 
  return out 
 
output.CellData.append(atan2(p[:,1], p[:,0]), 'theta') 

Figure 1 - Axisymmetric slice of exploding shaped charge, showing the different materials involved. The exploded primer charge 
is on the left, the shock wave separating the reactants and products in the main charge is located in the center. The thin layer of 
metal can be seen forming a jet toward the right, and the thick metal casing surrounds the charge on the top. The axis of 
symmetry is at the bottom.  



As noted in the code, the arctan formula will fail for inputs with no momentum in the x-direction. This is 
most easily managed by first using a Paraview Threshold filter to remove all data with x-momentum 
smaller than some epsilon value.  

Computing Angular Distribution of Momentum 
Mathematically, we wish to compute the distribution of momentum in the simulation as a function of 
polar angle. This is most conveniently done mathematically by expressing momentum in polar 
coordinates (𝑝𝑝,𝜃𝜃) and integrating over the magnitude 𝑝𝑝. Unfortunately, in our case we do not have 
access to a continuous field representation of momentum, so we must modify our algorithm slightly. 

Suppose that we have a field 𝜙𝜙:𝑀𝑀 → ℝ𝑛𝑛 and we wish to integrate it over some surface 𝑆𝑆 ⊂ 𝑀𝑀 (such as a 
cone of constant polar angle). The field 𝜙𝜙 is represented as a set of scalar or vector values at discrete 
points (denoted by 𝜙𝜙𝑖𝑖) which do not necessarily coincide with the surface 𝑆𝑆. Using continuous functions 
and variables, we would compute the integral of 𝜙𝜙 over 𝑆𝑆 directly: 

Φ = ∬ 𝜙𝜙 𝑑𝑑𝑆𝑆𝑆𝑆 . 

Since we do not assume that we have a set of discrete facets that aligns with the grid, we must find 
some way to approximate this integral. We do not choose to interpolate grid values onto the aligned 
surface. Instead, we will perform a weighted integration, with the weight function chosen to include 
only those values that ought to affect the average. In choosing our weight function, we want something 
that varies smoothly across its extent while ignoring points that are far from the averaging surface. One 
example is the bump function: 

Ψ(𝑥𝑥) = �exp �
1

(𝑥𝑥2 − 1)� ; 𝑥𝑥 ∈ (−1, 1)

0 ; 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

In our case, we want to be able to control the width of our bump, which yields: 

Figure 2 - The polar angle of the momentum vector as a function of space. Note the reddish areas which are moving radially 
inward (up), while the blue of moving radially out (down). Areas with zero momentum (such as the unreacted main charge) are 
not shown. 



Ψ(𝑥𝑥,ℎ) = �exp�
ℎ2

(𝑥𝑥2 − ℎ2)� ; 𝑥𝑥 ∈ (−ℎ,ℎ)

0 ; 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

We will need to normalize this function for a given value of ℎ: 

Ψ′(𝑥𝑥,ℎ) ≡
Ψ(𝑥𝑥,ℎ)

∫ Ψ(𝑥𝑥,ℎ)𝑑𝑑𝑥𝑥ℎ
−ℎ

≅
Ψ(𝑥𝑥,ℎ)

0.443994 ℎ
 

It is straightforward to show:  

lim
ℎ→0

� Ψ′(𝑥𝑥, ℎ)𝜙𝜙�𝑉𝑉(𝑥𝑥)�𝑑𝑑𝑉𝑉 = � 𝜙𝜙(𝑆𝑆)𝑑𝑑𝑆𝑆
𝑆𝑆𝑉𝑉

 

From this, we may define:  

� 𝜙𝜙 𝑑𝑑𝑆𝑆
𝑆𝑆

≈� Ψ(𝑥𝑥𝑖𝑖,ℎ) 𝜙𝜙𝑖𝑖 𝑉𝑉𝑖𝑖
𝑖𝑖

 

Evaluating the surface integral in this way is mathematically equivalent to performing a smoothing 
convolution using the bump filter. The parameter ℎ effectively controls the degree of the smoothing. A 
Programmable Filter for this is shown in Programmable Filter 2. 

 

Figure 3 - Physical-space representation of the total momentum associated with a given polar angle in phase space. 

Computing Maximum Momentum for a Given Polar Angle 
It is useful to compute the maximum momentum at a given polar angle, particularly for scaling 
purposes. We will apply the same smoothing operation as before, with a different normalization. 



The intent of this normalization is to preserve the actual maximum value where appropriate, while 
smoothing the effects of the discretization. To this end, we will simply normalize the bump function 
Ψ(𝑥𝑥,ℎ) by its peak value, Ψ(0,ℎ). This yields: 

Ψ′(𝑥𝑥.ℎ) ≡ 𝑒𝑒 Ψ(𝑥𝑥,ℎ) 

Profiling has shown that the bulk of the computation time in these smoothing operations lies in the 
computation of Ψ(𝑥𝑥,ℎ), so we take advantage of the work already done in computing the angular 
distribution by computing the maximum pressure at the same time, as shown in Programmable Filter 2 

Representing the Angular Distribution as a Curve in Paraview 
As computed above, both the integrated_momentum and max_momentum fields are cell-centered 
fields across the whole discrete mesh, representing the integrated and maximum momentum along the 
cone of constant polar angle in phase space, corresponding to the phase space angle of the momentum 
of the given cell. This is very confusing, and it is also not typically what we want. A better representation 
of the angular distribution of momentum would be a simple polar graph.  

A simple polar graph can be created by using the integrated momentum as the radial distance from the 
origin and the phase space polar angle. A Programmable Filter to do this is shown in Programmable 
Filter 3. The resulting plot is shown in Figure 5. 

 

Figure 4 - Physical-space representation of the maximum momentum associated with a given phase-space polar angle. 



 

Programmable Filter 2 - Code for computing the angular distribution of a vector quantity, as well as a smoothed maximum 
value. The smoothing function is applied to the polar angle directly. 

 
Programmable Filter 3 - Code for creating a polar plot representation of the angular momentum distribution. The Output Data 
Set Type field must be set to vtkPolyData. 

p = inputs[0].CellData['cell_momentum'] 
q = inputs[0].CellData['theta'] 
# compute the magnitude of the momentum: 
p = sqrt((p*p).sum(axis=1)) 
h = pi/32 
h2 = h**2 
sortargs = argsort(q) 
unsortargs = argsort(sortargs) 
q = q[sortargs] 
p = p[sortargs] 
P = 0*p 
p_max = 0*p 
for ind in range(len(q)): 
  q0 = q[ind] 
  min_ind, max_ind = searchsorted(q, (q0-h, q0+h)) 
  x2 = (q[min_ind:max_ind] - q0)**2 
  Psi = exp(h2/(x2-h2)) 
  temp = Psi*p[min_ind:max_ind] 
  P[ind] = sum(temp/(h*.443994)) 
  p_max[ind] = max(temp*2.71828) 
output.CellData.append(P[unsortargs], 'integrated_momentum') 
output.CellData.append(p_max[unsortargs], 'max_momentum') 

P = inputs[0].CellData['integrated_momentum'] 
q = inputs[0].CellData['theta'] 
sortargs = argsort(q) 
y = P*cos(q) 
x = P*sin(q) 
z = 0*P 
x, y, z = (coord[sortargs] for coord in (x,y,z)) 
numPts = len(q) 
pdo = self.GetPolyDataOutput() 
newPts = vtk.vtkPoints() 
for ind in range(0, numPts): 
  newPts.InsertPoint(ind, x[ind], y[ind], z[ind]) 
pdo.SetPoints(newPts) 
aPolyLine = vtk.vtkPolyLine() 
aPolyLine.GetPointIds().SetNumberOfIds(numPts) 
for ind in range(0, numPts): 
  aPolyLine.GetPointIds().SetId(ind, ind) 
pdo.Allocate(1, 1) 
pdo.InsertNextCell(aPolyLine.GetCellType(), aPolyLine.GetPointIds()) 



  

Figure 5 - Polar plot of angular momentum distribution for the shaped charge simulation. 



Filling in the Angular Distribution 
It is often desirable to add additional information to a given visualization. In this case, the most obvious 
way to do is by using Paraview’s capabilities to fill in the curve we have drawn with a representation of 
the data on the original grid. This provides several challenges. 

First, the curve we have drawn is rendered with respect to the phase space of the simulation. In other 
words, the x- and y- coordinates of the curve represent momentum values, not position. Paraview 
allows the user to convert a data set to an alternate coordinate representation using the Coordinate 
Values option in the Calculator filter. The question becomes, “What is the appropriate coordinate 
transformation?” One choice is to scale the cell momentum: 

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≡ 𝑝𝑝
𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠
𝑝𝑝𝑚𝑚𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

 

Having done this, it is possible to convert the rest of the grid values to the scaled momentum 
coordinates. It is then possible to plot a scalar field, such as the magnitude of the individual cell 
momentum, as shown in Figure 6. 

Further Thoughts and Considerations 
Visual Distortion Due to Spherical Coordinates 
One problem with this analysis is that the volume over which momentum is integrated is smaller near 
the poles than it is near the equator. It is possible to modify the Programmable Filter code to integrate 
over something like 𝑎𝑎 ≡ cos𝜃𝜃 in order to address this. However, care must be taken to ensure that the 
integration is done correctly, and this will result in an artificially symmetric result for 180∘ < 𝜃𝜃 < 360∘. 
That may not matter for simulations that have run to late time, where momentum toward the axis of 
symmetry may be neglected.  

How to Color the Fill Points 
Coloring the fill points by cell momentum is simple, but it can also be misleading. The xRage quantity 
cell_momentum is extrinsic, which means that it will scale both with radial distance and with grid 
size. The dark red points in Figure 6, for instance, are simply representations of grid points that have 
been de-refined by the xRage AMR. It is likely that filling in the curve will require something more 
sophisticated. 

 



 

Figure 6 - Polar plot of angular momentum distribution, filled with pointwise representations of the cell momentum contained in 
each cell. 

  



Python state file for creating this analysis 
# state file generated using paraview version 5.9.1 
 
#### import the simple module from the paraview 
from paraview.simple import * 
#### disable automatic camera reset on 'Show' 
paraview.simple._DisableFirstRenderCameraReset() 
 
# ---------------------------------------------------------------- 
# setup the data processing pipelines 
# ---------------------------------------------------------------- 
 
# create a new 'PIO Reader' 
shapedcharge2dpio = PIOReader(registrationName='shapedcharge2d.pio', 
FileName='U:\\Visualization\\pio\\shapedcharge2d.pio') 
shapedcharge2dpio.CellArrays = ['cell_energy', 'cell_momentum', 
'mass', 'mat', 'vcell'] 
 
# create a new 'Calculator' 
calculator1 = Calculator(registrationName='Calculator1', 
Input=shapedcharge2dpio) 
calculator1.AttributeType = 'Cell Data' 
calculator1.ResultArrayName = 'cell_momentum' 
calculator1.Function = 
'cell_momentum_X*iHat+cell_momentum_Y*jHat+0*kHat' 
 
# create a new 'Merge Blocks' 
mergeBlocks1 = MergeBlocks(registrationName='MergeBlocks1', 
Input=calculator1) 
 
# create a new 'Ghost Cells Generator' 
ghostCellsGenerator1 = 
GhostCellsGenerator(registrationName='GhostCellsGenerator1', 
Input=mergeBlocks1) 
ghostCellsGenerator1.MinimumNumberOfGhostLevels = 2 
 
# create a new 'Reflect' 
reflect1 = Reflect(registrationName='Reflect1', 
Input=ghostCellsGenerator1) 
reflect1.CopyInput = 0 
 
# create a new 'Transform' 
transform1 = Transform(registrationName='Transform1', Input=reflect1) 
transform1.Transform = 'Transform' 
 
# init the 'Transform' selected for 'Transform' 
transform1.Transform.Rotate = [0.0, 0.0, -90.0] 
 
# create a new 'Calculator' 
calculator2 = Calculator(registrationName='Calculator2', 
Input=transform1) 
calculator2.AttributeType = 'Cell Data' 
calculator2.ResultArrayName = 'p_x_mag' 



calculator2.Function = 'abs(cell_momentum_X)' 
 
# create a new 'Threshold' 
threshold1 = Threshold(registrationName='Threshold1', 
Input=calculator2) 
threshold1.Scalars = ['CELLS', 'p_x_mag'] 
threshold1.ThresholdRange = [1e-14, 1e+33] 
 
# create a new 'Programmable Filter' 
programmableFilter1 = 
ProgrammableFilter(registrationName='ProgrammableFilter1', 
Input=threshold1) 
programmableFilter1.Script = """p = 
inputs[0].CellData['cell_momentum'] 
 
def atan2(y,x): 
  sgnx = sign(x) 
  sgny = sign(y) 
  # This fails when x = 0, b/c arctan(y/x) = NaN, and 0*NaN = NaN. 
  # Make sure you've gotten rid of those using Threshold or similar. 
  out = sgnx**2*arctan(y/x)+.5*(1-sgnx)*(1+sgny-sgny**2)*pi 
  return out 
 
output.CellData.append(atan2(p[:,1], p[:,0]), 'theta')""" 
programmableFilter1.RequestInformationScript = '' 
programmableFilter1.RequestUpdateExtentScript = '' 
programmableFilter1.CopyArrays = 1 
programmableFilter1.PythonPath = '' 
 
# create a new 'Calculator' 
calculator5 = Calculator(registrationName='Calculator5', 
Input=programmableFilter1) 
calculator5.AttributeType = 'Cell Data' 
calculator5.ResultArrayName = 'Polar Angle (deg)' 
calculator5.Function = 'theta*180/3.14159' 
 
# create a new 'Programmable Filter' 
programmableFilter2 = 
ProgrammableFilter(registrationName='ProgrammableFilter2', 
Input=programmableFilter1) 
programmableFilter2.Script = """p = 
inputs[0].CellData['cell_momentum'] 
q = inputs[0].CellData['theta'] 
 
# compute the magnitude of the momentum: 
p = sqrt((p*p).sum(axis=1)) 
h = pi/32 
h2 = h**2 
sortargs = argsort(q) 
unsortargs = argsort(sortargs) 
q = q[sortargs] 
p = p[sortargs] 
P = 0*p 
p_max = 0*p 



for ind in range(len(q)): 
  q0 = q[ind] 
  min_ind, max_ind = searchsorted(q, (q0-h, q0+h)) 
  x2 = (q[min_ind:max_ind] - q0)**2 
  Psi = exp(h2/(x2-h2)) 
  temp = Psi*p[min_ind:max_ind] 
  P[ind] = sum(temp/(h*.443994)) 
  p_max[ind] = max(temp*2.71828) 
output.CellData.append(P[unsortargs], 'integrated_momentum') 
output.CellData.append(p_max[unsortargs], 'max_momentum')""" 
programmableFilter2.RequestInformationScript = '' 
programmableFilter2.RequestUpdateExtentScript = '' 
programmableFilter2.CopyArrays = 1 
programmableFilter2.PythonPath = '' 
 
# create a new 'Calculator' 
calculator3 = Calculator(registrationName='Calculator3', 
Input=programmableFilter2) 
calculator3.AttributeType = 'Cell Data' 
calculator3.ResultArrayName = 'scaled_p_coords' 
calculator3.Function = 
'cell_momentum*integrated_momentum/max_momentum' 
 
# create a new 'Cell Data to Point Data' 
cellDatatoPointData1 = 
CellDatatoPointData(registrationName='CellDatatoPointData1', 
Input=calculator3) 
cellDatatoPointData1.ProcessAllArrays = 0 
cellDatatoPointData1.CellDataArraytoprocess = ['scaled_p_coords'] 
cellDatatoPointData1.PassCellData = 1 
 
# create a new 'Calculator' 
calculator4 = Calculator(registrationName='Calculator4', 
Input=cellDatatoPointData1) 
calculator4.CoordinateResults = 1 
calculator4.Function = 'scaled_p_coords' 
 
# create a new 'Calculator' 
calculator6 = Calculator(registrationName='Calculator6', 
Input=calculator4) 
calculator6.AttributeType = 'Cell Data' 
calculator6.ResultArrayName = 'Velocity (cm/s)' 
calculator6.Function = 'cell_momentum/mass' 
 
# create a new 'Threshold' 
threshold2 = Threshold(registrationName='Threshold2', 
Input=calculator2) 
threshold2.Scalars = ['CELLS', 'mat'] 
threshold2.ThresholdRange = [1.5, 10630.557989487197] 
 
# create a new 'Extract Time Steps' 
extractTimeSteps1 = 
ExtractTimeSteps(registrationName='ExtractTimeSteps1', 
Input=threshold2) 



extractTimeSteps1.TimeStepIndices = [0] 
extractTimeSteps1.TimeStepRange = [0, 33] 
 
# create a new 'Programmable Filter' 
programmableFilter3 = 
ProgrammableFilter(registrationName='ProgrammableFilter3', 
Input=programmableFilter2) 
programmableFilter3.OutputDataSetType = 'vtkPolyData' 
programmableFilter3.Script = """P = 
inputs[0].CellData['integrated_momentum'] 
q = inputs[0].CellData['theta'] 
sortargs = argsort(q) 
 
x = P*cos(q) 
y = P*sin(q) 
z = 0*P 
 
x, y, z = (coord[sortargs] for coord in (x,y,z)) 
 
numPts = len(q) 
pdo = self.GetPolyDataOutput() 
newPts = vtk.vtkPoints() 
for ind in range(0, numPts): 
  newPts.InsertPoint(ind, x[ind], y[ind], z[ind]) 
newPts.InsertPoint(numPts, x[0], y[0], z[0]) 
pdo.SetPoints(newPts) 
aPolyLine = vtk.vtkPolyLine() 
aPolyLine.GetPointIds().SetNumberOfIds(numPts+1) 
for ind in range(0, numPts+1): 
  aPolyLine.GetPointIds().SetId(ind, ind) 
pdo.Allocate(1, 1) 
pdo.InsertNextCell(aPolyLine.GetCellType(), 
aPolyLine.GetPointIds())""" 
programmableFilter3.RequestInformationScript = '' 
programmableFilter3.RequestUpdateExtentScript = '' 
programmableFilter3.PythonPath = '' 
 
# create a new 'Tube' 
tube1 = Tube(registrationName='Tube1', Input=programmableFilter3) 
tube1.Scalars = ['POINTS', ''] 
tube1.Vectors = ['POINTS', '1'] 
tube1.Radius = 100000.0 
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